Physics 137B (Professor Shapiro) Spring 2010

GSI: Tom Griffin

Homework 8 Solutions

- 1. A photon of wavelength λ has energy $E = hc/\lambda$. So $N = \frac{1W}{(hc/\lambda)}$ photons are emitted per second from a 1W power source. The number of photons per unit area per unit time passing through a surface 10m away from the source and normal to the direction of propagation is then $n = N/(4\pi(10\text{m})^2)$.
 - (a) $\lambda = 10 \text{m}, N = 5 \times 10^{25} \text{s}^{-1}, n = 4 \times 10^{22} \text{s}^{-1} \text{m}^{-2}$
 - **(b)** $\lambda = 0.1 \text{m}, N = 5 \times 10^{23} \text{s}^{-1}, n = 4 \times 10^{20} \text{s}^{-1} \text{m}^{-2}$
 - (a) $\lambda = 5.89 \times 10^{-7} \text{m}, N = 2.97 \times 10^{18} \text{s}^{-1}, n = 2.36 \times 10^{15} \text{s}^{-1} \text{m}^{-2}$
 - (d) $\lambda = 10^{-10} \text{m}, N = 5 \times 10^{14} \text{s}^{-1}, n = 4 \times 10^{11} \text{s}^{-1} \text{m}^{-2}$
- 2. Averaging over all angular directions we have:

$$<\cos^{2}\theta> = \frac{\int d\Omega \cos^{2}\theta}{\int d\Omega}$$

$$= \frac{\int_{0}^{2\pi} d\phi \int_{-1}^{1} d(\cos\theta) \cos^{2}\theta}{\int_{0}^{2\pi} d\phi \int_{-1}^{1} d(\cos\theta)}$$

$$= \frac{2\pi \left[\cos^{3}\theta/3\right]_{\cos\theta=-1}^{\cos\theta=1}}{4\pi}$$

$$= \frac{2\pi(2/3 - (-2/3))}{4\pi}$$

$$= 1/3$$

3. From section 11.3 of the text, the Einstein coefficients A and B are defined in relation to the rates of spontaneous emission $(W^{spont} = A)$ and stimulated emission $(W^{stim} = B\rho)$. So we have that:

$$\frac{W^{stim}}{W^{spont}} = \frac{B\rho}{A}$$
$$= \frac{1}{e^{\hbar\omega/kT} - 1}$$

where equations 11.71 and 11.74a of the text have been used, and where ω is the frequency associated to the energy transition. In this case, $\hbar\omega=(-1/4+1)13.6\mathrm{eV}=10.2\mathrm{eV}$ and T=2000K, so that $kT=0.1725\mathrm{eV}$ and $\frac{1}{e^{\hbar\omega/kT}-1}=2.1\times10^{-26}$. Therefore:

$$W^{stim} = \frac{1}{e^{\hbar\omega/kT} - 1} W^{spont}$$
$$= (2.1 \times 10^{-26})(6.27 \times 10^8 \text{s}^{-1})$$
$$= 1.3 \times 10^{-17} \text{s}^{-1}$$

4. The half-life $(t_{1/2})$ is related to τ by:

$$1/2 = P(t_{1/2})$$

$$= \exp(-t_{1/2}/\tau)$$

$$\ln(1/2) = -t_{1/2}/\tau$$

$$t_{1/2} = \tau \ln(2)$$

5. (a) The selection rules say that l must change by 1 and m must change by 0 or ± 1 . So the following three decay routes are allowed by electric dipole transitions:

$$|300> \rightarrow |2 \quad 1 \quad 1> \rightarrow |100>$$

 $|300> \rightarrow |2 \quad 1 \quad 0> \rightarrow |100>$
 $|300> \rightarrow |2 \quad 1 \quad -1> \rightarrow |100>$

(b) From equation 11.80 of the text, the spontaneous emission rate is $W_{ab}^s = \frac{4}{3} \frac{\alpha}{e^2 c^2} \omega_{ba}^3 |\mathbf{D}_{ab}|^2$ where:

$$\mathbf{D}_{ab} = -e \int_{0}^{\infty} dr R_{21}(r) R_{30}(r) r^{3} \int d\Omega Y_{1m}^{*}(\theta, \phi) \hat{\mathbf{r}} Y_{00}(\theta, \phi)$$

$$= -e \int_{0}^{\infty} dr R_{21}(r) R_{30}(r) r^{3} (\frac{1}{\sqrt{6}} (-\delta_{m,1} + \delta_{m,-1}) \hat{\mathbf{x}} + \frac{1}{\sqrt{6}} i (\delta_{m,1} + \delta_{m,-1}) \hat{\mathbf{y}}$$

$$+ \frac{1}{\sqrt{3}} (\delta_{m,0}) \hat{\mathbf{z}}$$
(using equation 11.85 of the text)

So the transition rate is:

$$W_{ab}^{s} = \frac{4}{3} \frac{\alpha}{c^{2}} \omega_{ba}^{3} \left| \int_{0}^{\infty} dr R_{21}(r) R_{30}(r) r^{3} \right|^{2} \left(\frac{1}{6} (\delta_{m,1} + \delta_{m,-1}) + \frac{1}{6} (\delta_{m,1} + \delta_{m,-1}) + \frac{1}{6} (\delta_{m,1} + \delta_{m,-1}) \right) + \frac{1}{3} (\delta_{m,0})$$

$$= \frac{4}{9} \frac{\alpha}{c^{2}} \omega_{ba}^{3} \left| \int_{0}^{\infty} dr R_{21}(r) R_{30}(r) r^{3} \right|^{2} (\delta_{m,1} + \delta_{m,-1} + \delta_{m,0})$$

The above formula shows that the transition rate is equal to each value of m. Thus there is a 1/3 probability of decaying through any of the three channels, and 1/3 of the atoms would decay via each of the routes in part (a).

(c) We have that

$$\int_0^\infty dr R_{21}(r) R_{30}(r) r^3$$

$$= \int_0^\infty dr \frac{2}{\sqrt{3}} (1/6a_\mu^2)^{3/2} (r/a_\mu) (1 - 2r/3a_\mu + 2r^2/27a_\mu^2) \exp(-r/2a_\mu - 2/3a_\mu) r^3$$

$$= \frac{2^7 3^4}{5^6} \sqrt{2} a_\mu$$

and also that

$$\omega_{ba} = (E_3 - E_2)/\hbar$$
$$= \frac{5}{36}E_1/\hbar$$
$$= \frac{5}{72}\frac{\mu c^2}{\hbar}\alpha^2.$$

So the transition rate from the $|300\rangle$ state to the $|21m\rangle$ state is (using the expression in part (b)):

$$W_{ab}^{s} = \frac{4}{9} \frac{\alpha}{c^{2}} \left(\frac{5}{72} \frac{\mu c^{2}}{\hbar} (\alpha)^{2} \right)^{3} \left| \frac{2^{7}3^{4}}{5^{6}} \sqrt{2} a_{\mu} \right|^{2} (\delta_{m,1} + \delta_{m,-1} + \delta_{m,0})$$

$$= \frac{4}{9} \frac{\alpha}{c^{2}} \left(\frac{5}{72} \frac{\mu c^{2}}{\hbar} (\alpha)^{2} \right)^{3} \left| \frac{2^{7}3^{4}}{5^{6}} \sqrt{2} (\hbar/\mu \alpha c) \right|^{2} (\delta_{m,1} + \delta_{m,-1} + \delta_{m,0})$$

$$= \frac{2^{8}}{5^{9}} \frac{\alpha^{5} c^{2} \mu}{\hbar} (\delta_{m,1} + \delta_{m,-1} + \delta_{m,0})$$

$$\approx 2.1 \times 10^{6} s^{-1} (\delta_{m,1} + \delta_{m,-1} + \delta_{m,0})$$

So the transition rate to each of the three final states (m=-1,0,1) is $2.1 \times 10^6 \mathrm{s}^{-1}$. So the total decay rate of the |300> state is $W=3\times(2.1\times10^6\mathrm{s}^{-1})=6.3\times10^6\mathrm{s}^{-1}$, leading to a lifetime of $\tau=1/W=1.6\times10^{-7}\mathrm{s}$.